Potencialidades de los celulares inteligentes para investigaciones biológicas. Parte 2: Receptores GPS/GNSS

Dennis Denis, Daryl D. Cruz Flores, Yarelys Ferrer-Sánchez, Fermín L. Felipe Tamé

Resumen


Actualmente, la tecnología de los celulares o teléfonos inteligentes ha resultado en equipos electrónicos, altamente sofisticados y con una amplia gama de sensores integrados, entre los que se encuentran los receptores GPS/GNSS. Estos se incorporaron a los celulares para desarrollar los servicios basados en ubicación, que permiten acceder a información espacial personalizada, en tiempo real, por medio de las redes informáticas. Todavía existe desconfianza sobre el valor de estos sensores para la actividad científica, pero existe un número creciente de publicaciones que los han validado para este uso. En este trabajo se hace una revisión de la literatura científica en el campo de la Ecología y las investigaciones medioambientales a nivel mundial y la postura de sus autores en relación al empleo de los sensores de ubicación presentes en los celulares inteligentes. Además de los sistemas GPS asistidos, los modelos más recientes tienen receptores multi-constelación y de doble frecuencia con precisiones similares a las de otros GPS comerciales, a nivel de pocos metros, aunque varios factores deben ser considerados, como el modelo del celular, la aplicación empleada, el lugar donde se toman las mediciones y el objetivo del trabajo. Si se siguen protocolos apropiados de validación y se selecciona cuidadosamente la aplicación para tomar los datos, se ha demostrado que estos sensores de los teléfonos inteligentes modernos pueden ser alternativas razonables y de calidad suficiente para la mayoría de los trabajos de campo en Ecología.

Citación: Denis, D., Cruz, D.D., Ferrer-Sánchez, Y. & Felipe, F.L. 2021. Potencialidades de los celulares inteligentes para investigaciones biológicas. Parte 2: Receptores GPS/GNSS. Revista Jard. Bot. Nac. Univ. Habana 42: 209-216.

Recibido: 19 de septiembre de 2020. Aceptado: 25 de enero de 2021. Publicado en línea: 13 de agosto de 2021. Editor encargado: Luis Manuel Leyva.


Palabras clave


brecha tecnológica; estudios de campo; tecnologías móviles


Estadísticas de Vistas/View Statistics: Resumen - 740 ; PDF - 386


Texto completo:

PDF

Referencias


ABCD. 2007. Access to biological collection data (ABCD). Versión 2.06. Biodiversity information standards (TDWG). http://www.tdwg.org/standards/115. 20 de julio de 2019.

Allen, T.F.H. & Hoekstra, T.W. 1990. The confusion between scale-defined levels and conventional levels of organization in ecology. J. Veg. Sci. 1(1): 5-12.

Aranki, D., Kurillo, G., Yan, P.S., Liebovitz, D.M. & Bajcsy, R. 2016. Real-time monitoring of patients with chronic heart-failure using a smartphone: Lessons learned. IEEE Trans. Affect. Comput. 7: 206-219.

Barros, C., Moya-Gómez, B. & Gutiérrez, J. 2020. Using geotagged photographs and GPS tracks from social networks to analyse visitor behaviour in national parks. Curr. Issues Tourism 23(10): 1291e1310. https://doi.org/10.1080/13683500.2019.1619674.

Bauer, C. 2013. On the (in-)accuracy of GPS measures of smartphones: a study of running tracking applications. Proc. Int. Conf. Adv. Mobile Comp. Multimedia: 335-341.

Bierlaire, M., Chen, J. & Newman, J. 2013. A probabilistic map matching method for smartphone GPS data. Transp. Res. Part C. Emerg. Technol. 26: 78-98.

Chandler, M., See, L., Copas, K., Bonde, A.M.Z., López, B.C. & Danielsen, F. 2017. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213: 280-294. https://doi.org/10.1016/j.biocon.2016.09.004.

Closas, P., Fernández-Prades, C. & Fernández-Rubio, J.A. 2009. A Bayesian approach to multipath mitigation in GNSS receivers. IEEE J. Select. Topics Signal Proc. 3(4): 695-706. https://doi.org/10.1109/JSTSP.2009.2023831.

Criscuolo, L., Carrara, P., Oggioni, A., Pugnetti, A. & Antoninetti, M. 2018. Can VGI and mobile apps support long-term ecological research? A test in remote areas of the alps. Pp. 53-69. En: Bordogna,

G. & Carrara, P. (ed.). Mobile Information Systems Leveraging Volunteered Geographic Information for Earth Observation. Earth Systems Data and Models, vol. 4. Springer. Cham, Alemania. https://doi.org/10.1007/978-3-319-70878-2_3

Dabove, P. & Manzino, A.M. 2014. GPS & GLONASS mass-market receivers: positioning performances and peculiarities. Sensors 14: 22159-22179.

Dabove, P., Ghinamo, G. & Lingua, A.M. 2015. Inertial sensors for smartphones navigation. SpringerPlus 4(834): 1-18.

Dabove, P., Di Pietra, V. Hatem, H. & Piras, M. 2019. GNSS positioning using android smartphone. Pp. 135-142. En: 5th International Conference on Geographic Information Systems Theory, Applications and Management - GISTAM Proceedings.

Das, R.D. & Winter, S. 2018. A fuzzy logic based transport mode detection framework in urban environment. J. Intelligent Trans. Syst. 22: 478-489.

Denis, D. & Cruz, D.D. (2021) Sobre los Sistemas Satelitales de Navegación Global: guía básica para ecólogos. Preprint. https://doi.org/10.13140/RG.2.2.26678.52802

Denis, D., Cruz, D.D., Ferrer-Sánchez, Y. & Felipe, F.L. 2021. Potencialidades de los celulares inteligentes para investigaciones biológicas. Parte 1: Sensores integrados. Revista Jard. Bot. Nac. Univ. Habana 42: 77-91.

Duncan, S., Stewart, T.I., Oliver, M., Mavoa, S., MacRae, D., Badland, H.M. & Duncan, M.J. 2013. Portable Global Positioning System receivers: static validity and environmental conditions. Am.J. Prev. Med. 44(2): e19–e29. https://doi.org/10.1016/j.amepre.2012.10.013

ESRI (Environment Systems Research Institute). 2019. Collector for ArcGIS Overview. https://www.esri.com/en-us/arcgis/products/collector-for-arcgis/overview. 20 de julio de 2020.

Fan, G., Chen, F., Li, Y., Liu, B. & Fan, X. 2019. Development and tes-ting of a new ground measurement tool to assist in forest GIS surveys. Forests 10: 643. https://doi.org/10.3390/f10080643.

Garnett, R. & Stewart, R. 2015. Comparison of GPS units and mobile Apple GPS capabilities in an urban landscape. Cartogr. Geogr. Inf. Sci. 42: 1-8.

GISCloud. 2019a. Mapping the emerald ash borer infestation in Maple grove (case study). https://www.giscloud.com/blog/maple-grove-tree-inventorycase-study/. 20 de julio de 2019.

GISCloud. 2019b. Improving tree inspections with mobile apps for arborists (case study). https://www.giscloud.com/blog/arborist-use-case-tree-inventoryand-inspection/. 20 de julio 2019.

GISCloud. 2019c. WeForest e improving the forest restoration process in Zambia with GIS cloud. https://www.giscloud.com/blog/weforest-increasing-efficiency-and-transparency-in-forest-restoration-process-with-gis-cloud/. 20 de julio 2020.

Glasgow, M.L., Rudra, C.B., Yoo, E.H., Demirbas, M., Merriman, J. & Nayak, P. 2016. Using smartphones to collect time-activity data for long-term personal level air pollution exposure. J. Expo. Sci. Environ. Epidemiol. 4: 356-364.

Goodchild, M. F. 2007. Citizens as sensors: the world of volunteered geography. Geojournal 69: 211-221. https://doi.org/10.1007/s10708-007-9111-y.

GSA (European GNSS Agency). 2019. What is GNSS? https://www.gsa.europa.eu/european-gnss/what-gnss. 20 de julio de 2020.

Guilbaud, C.S. & Guilbaud, T.G. 2017. Mosquito Mapper: a phone application to map urban mosquitoes. Sci. Phone Appl. Mob. Devices. 3: 6. https://doi.org/10.1186/s41070-017-0018-9.

Hardy, J., Veinot, T.C., Yan, X., Berrocal, V.J., Clarke, P. & Goodspeed, R. 2018. User acceptance of location tracking technologies in health research: Implications for study design and data quality. J. Biomed. Inform. 79: 7-19. https://doi.org/10.1016/j.jbi.2018.01.003.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15): 1965-1978.

Hofer, H. & Retscher, G. 2017. Seamless navigation using GNSS and Wi-Fi/IN with intelligent checkpoints. J. Location-Based-Services. 11: 204-221.

Jones, T.W., Marzen, L. & Chappelka, A. 2015. Horizontal accuracy assessment of global positioning system data from common smartphones. Appl. Geogr. 1(1): 59-64.

Jurado, J., Pérez, M.Y. & Serrano, D., 2019. Visitor monitoring in protected areas: an approach to Natura 2000 sites using Volunteered Geographic Information (VGI). Geografisk Tidsskrift-Danish J. Geog. 119(1): 69-83. https://doi.org/10.1080/00167223.2019.1573409.

Kim, J., Thapa, B. & Jang, S. 2019. GPS-based mobile exercise application: an alternative tool to assess spatio-temporal patterns of visitors’ activities in a national park. J. Park Recreat. Adm. 37(1): 124-134. https://doi.org/10.18666/JPRA-2019-9175.

Korpilo, S., Virtanen, T., Saukkonen, T. & Lehveavirta, S. 2018. More than A to B: understanding and managing visitor spatial behaviour in urban forests using public participation GIS. J. Environ. Manag. 207: 124-133. https://doi.org/10.1016/j.jenvman.2017.11.020.

Kos, S., Brcic, D. & Musulin, I. 2013. Smartphone application GPS performance during various space weather conditions: a preliminary study. Pp.: 1-4. En: Proceedings of the 21st International Symposium on Electronics in Transport.

Kress, W.J., Garcia-Robledo, C., Soares, J.V.B., Jacobs, D., Wilson, K., Lopez, I.C. & Belhumeur, P.N., 2018. Citizen Science and Climate Change: mapping the range expansions of native and exotic plants with the mobile app Leafsnap. BioScience 68: 348-358.

Lachapelle, G. & Gratton, P. 2019. GNSS precise point positioning with android smartphones and comparison with high performance receivers. Pp.: 1-9. En: 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP).

Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T. & Campbell, A.T. 2010. A survey of mobile phone sensing. IEEE Comm. Magazine 48(9): 140-150.

Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73: 1943-1967.

Levins, R. 1966. The strategy of model building in population biology. Am. Sci. 54(4): 421-431.

Lindgren, A.N. 2017. Implementation of a volunteered geographic information (VGI) mobile application for plant inventory. Tesis de Maestría. California State University.

Lue, G. & Miller, E.J. 2019. Estimating a Toronto pedestrian route choice mode using smartphone GPS data. Travel Behav. Soc. 14: 34-42.

Lwin, K.K. & Murayama, Y. 2011. Web-Based GIS system for real-time field data collection using a personal mobile phone. J. Geog. Inf. Sys. 3: 382-389.

Massad, I. & Dalyot, S. 2018. Towards the crowdsourcing of massive smartphone assisted-GPS sensor ground observations for the production to Digital Terrain Models. Sensors 18: 898.

Menard, T., Miller, J., Mowak, M. & Norris, D. 2011. Comparing the GPS capabilities of the Samsung Galaxy S, Motorola Droid X, and the Apple iPhone for vehicle tracking using FreeSim_Mobile. Pp.: 985-990. En: 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). Washington, DC, USA.

Merry, K. & Bettinger, P. 2019. Smartphone GPS accuracy study in an urban environment. PLoS ONE 14(7): e0219890. https://doi.org/10.1371/journal.pone.0219890.

Mok, E., Retcher, G. & Wen, C. 2012. Initial test on the use of GPS and sensor data on modern smartphones for vehicle tracking in dense high rise environments. Proc. Ubiq. Positioning, Indoor Nav. Location Based Services 2012, Oct. Helsinki, Finland.

Müllerová, J., Bruna, J., Bartalos, T. & Dvorak, P. 2017. Timing is important: unmanned aircraft vs Satellite imagery in plant invasion monitoring. Front. Plant Sci. 8: 887. https://doi.org/10.3389/fpls.2017.00887.

Muñoz, L., Hausner, V.H. & Monz, C.A. 2019. Advantages and limitations of using mobile apps for protected area monitoring and management. Soc. Nat. Resour. 32(4): 473-488.

Nour, A., Hellinga, B. & Casello, J. 2016. Classification of automobile and transit trips from smartphone data: Enhancing accuracy using spatial statistics and GIS. J. Transp. Geogr. 51: 36-44.

Nowak, M.M., Dziób, K., Ludwisiak, Ł., Chmiel, J. 2020. Mobile GIS applications for environmental field surveys: A state of the art. Global Ecol. Cons. https://doi.org/10.1016/j.gecco.2020.e01089.

Obuchi, S.P., Tsuchiya, S. & Kawai, H. 2018. Test-retest reliability of daily life gait speed as measured by Smartphone global positioning systems. Gait Posture 61: 282-286. https://doi.org/10.1016/j.gaitpost.2018.01.029.

Palumbo, M.J., Johnson, S.A., Mundim, F.M., Lau, A., Wolf, A.C., Arunachalam, S., Gonzalez, O., Ulrich, J.L., Washuta, A. & Bruna, E.M. 2012. Harnessing smartphones for ecological education, research, and outreach. Bull. Ecol. Soc. Am. 93(4): 390-393.

Paziewski, J.D. 2020. Recent advances and perspectives for positioning and applications with smartphone GNSS observations. Meas. Sci. Technol. 31: 091001. https://doi.org/10.1088/1361-6501/ab8a7d.

Pesyna, K.M.J., Heath, R.W. J. & Humphreys, T.E. 2014. Centimeter positioning with a smartphone-quality GNSS antenna. Pp.: 1568-1577. En: Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation, Tampa, Florida, USA.

Ragoin, C., Renaudin, V. & Ortiz, M. 2020. Precise positioning on smartphones: which implementation strategy to adopt? Pp.: 1-12. En: 4th GNSS Raw Measurements Taskforce Workshop.

Shirk, J.L., Ballard, H.L., Wilderman, C.C. & Phillips, T. 2012. Public participation in scientific research: a framework for deliberate design. Ecol. Soc. 17(2): 29. https://doi.org/10.5751/ES-04705-170229.

Sicard, C., Glen, C., Aubie, B., Wallace, D., Jahanshahi-Anhuhi, S., Pennings, K., Daigger, G.T.; Pelton, R., Brennan, J.D. & Felipe, C.D.M. 2015. Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Res. 70: 360-369.

Snaddon, J., Petrokofsky, G., Jepson, P. & Willis, K. J. 2013. Biodiversity technologies: tools as change agents. Biol. Lett. 9: 20121029.

Specht, C. & Szot, T. 2016. Testing methodology for gnss receivers used in sports and recreation. outline of issues. Pp. 246-259. En: Niznikowski, T., Sadowski, J. & Starosta, W. (ed.). Coordination abili-

ties in physical education sports and rehabilitation. Biala Podlaska: Jozef Pilsudski University of Physical Education, Warsaw Faculty of Physical Education and Sport. Polonia.

Statista, 2020. http://www.statista.com. 12 de agosto de 2020.

Szot, T., Specht, C., Specht, M. & Dabrowski, P.S. 2019. Comparative analysis of positioning accuracy of Samsung Galaxy smartphones in stationary measurements. PloS ONE 14(4): e0215562. https://doi.org/10.1371/journal.pone.0215562.

Teacher, A.G.F., Griffiths, D.J., Hodgson, D.J. & Inger, R. 2013. Smartphones in ecology and evolution: a guide for the app-rehensive. Ecol. Evol. 3(16): 5268-5278.

Tomastik, J.Jr., Tomastik, J.Sr., Salon, S. & Piroh, R. 2016. Horizontal accuracy and applicability of smartphone GNSS positioning in forests. Forestry 90: 187-198.

Turton, M. 2017. Using ArcGIS collector for non-lethal bumble bee data collection on the upper Mississippi River National wildlife and fish Refuge. https://ecos.fws.gov/ServCat/DownloadFile/156527. 25 de agosto de 2019.

Vallina-Rodriguez, N., Crowcroft, J., Finamore, A., Grunenberger, Y. & Papagiannaki, K. 2013. When assistance becomes dependence: characterizing the costs and inefficiencies of A-GPS. GetMobile 17: 3-14.

Vlahogianni, E.I. & Barmpounakis, E.N. 2017. Driving analytics using smartphones: Algorithms, comparisons and challenges. Transp. Res. Part C Emerg. Technol. 79: 196-206.

Weiss, J.W., Gulati, G.J., Yates, D.J. & Yates, L.E. 2015. Mobile broadband affordability and the global digital divide, an information ethics perspective. Pp.: 2177-2186. En: 48th Hawaii International Conference on System Sciences, Koloa, Kauai, HI, USA. https://doi.org/10.1109/HICSS.2015.261.

Wood, J.S., Moretzsohn, F. & Gibeaut, J. 2015. Extending marine species distribution maps using non-traditional sources. Biodivers. Data J. 3: e4900, https://doi.org/10.3897/BDJ.3.e4900.

Wu, Q., Sun, M., Zhou, C. & Zhang, P. 2019. Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone. Sensors 19: 2189. https://doi.org/10.3390/s19092189.

Yoon, D., Kee, C., Seo, J. & Park, B. 2016. Position accuracy improvement by implementing the DGNSS-CP algorithm in smartphones. Sensors 16: 910. https://doi.org/10.3390/s16060910

Zandbergen, P.A. 2009. Accuracy of iPhone locations: a comparison of assisted GPS, WiFi and cellular positioning. Trans. GIS. 13: 5-26.

Zandbergen, P.A. & Barbeau, S.J. 2011. Positional accuracy of assisted GPS data from high-sensitivity GPSenabled mobile phones. J. Navig. 64: 381-399.

Zandbergen, P.A. & Barbeau, S.J. 2011. Positional accuracy of assisted GPS data from high-sensitivity GPSenabled mobile phones. J. Navig. 64: 381-399.


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2021 Dennis Denis, Daryl D. Cruz Flores, Yarelys Ferrer-Sánchez, Fermín L. Felipe Tamé

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.

Para suscribirse a la revista o enviar un manuscrito para publicar utilice las direcciones:

revistajbn@jbn.uh.cu o revistajbn@gmail.com

ISSN 0253-5696 RNPS 0060 (IMPRESA)

ISSN 2410-5546 RNPS 2372 (DIGITAL)