Potencialidades de los celulares inteligentes para investigaciones biológicas. Parte 1: Sensores integrados

Dennis Denis, Daryl D. Cruz Flores, Yarelys Ferrer-Sánchez, Fermín L. Felipe Tamé

Resumen


Los teléfonos celulares han irrumpido en todos los aspectos de la vida de la mayor parte de la humanidad, incluyendo las actividades profesionales y científicas. Numerosas aplicaciones apoyan al investigador en el seguimiento de protocolos experimentales, manejo de bibliografía y como vía de conexión inalámbrica con otros equipos. Pero la amplia gama de sensores miniaturizados integrados que poseen, de alta precisión y que actúan en aspectos ocultos del funcionamiento del equipo, no ha sido aún lo suficientemente explotada. Los celulares modernos contienen potentes cámaras digitales, micrófonos, receptores GPS/GNSS, acelerómetros, giroscopios, sensores de magnetismo, luxómetros, barómetros, termómetros, sensores de humedad, sensores biométricos y muchos otros, que tienen el potencial de convertirse en importantes aliados para la recolecta de datos durante el trabajo de un investigador. A partir de ellos han aparecido las aplicaciones de brújulas, altímetros, escáneres, lectores de códigos de barras o QR, identificadores de rostros, sonidos o especies, detectores de metales, de movimientos o de vibraciones, podómetros, colorímetros, espectrómetros y muchas más. Todas estas herramientas están impactando un amplio espectro de campos científicos como la medicina, las ciencias sociales, el monitoreo ambiental, el transporte y la industria. Sin embargo, aún existe desconocimiento de sus ventajas y posibilidades, por lo cual, en este trabajo, se hace una revisión de las potencialidades que brindan estos sensores y sus aplicaciones en las investigaciones biológicas. En condiciones donde el equipamiento tecnológico es limitado, los celulares, sus sensores y las aplicaciones correspondientes pueden ser alternativas eficientes para sobrellevar la brecha tecnológica y aumentar la calidad de las investigaciones.

Citación: Denis, D., Cruz, D.D., Ferrer-Sánchez, Y. & Felipe, F.L. 2021. Potencialidades de los celulares inteligentes para investigaciones biológicas. Parte 1: Sensores integrados. Revista Jard. Bot. Nac. Univ. Habana 42: 77-91.

Recibido: 17 de septiembre de 2020. Aceptado: 25 de enero de 2021. Publicado en línea: 26 de abril de 2021. Editor encargado: Luis Manuel Leyva


Palabras clave


brecha tecnológica; herramientas alternativas; sensores microelectrónicos; teléfonos


Estadísticas de Vistas/View Statistics: Resumen - 80 ; PDF - 67


Texto completo:

PDF

Referencias


Aanensen, D.M., Huntley, D.M., Feil, E.J., al-Own, F. & Spratt, B.G. 2009. EpiCollect: linking smartphones to web applications for epidemiology, ecology and community data collection. PLoS ONE 4: e6968.

Adams, A.M., Jantzen, M K., Hamilton, R.M. & Fenton, M.B. 2012. Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats. Methods Ecol. Evol. 3: 992-998.

Adriaens, T., Sutton-Croft, M., Owen, K., Brosens, D., Van Valkenburg, J., Kilbey, D., Groom, Q., Ehmig, C., Thürkow, F., Van Hende, P. & Schneider, K. 2015. Trying to engage the crowd in recording invasive alien species in Europe: Experiences from two smartphone applications in northwest Europe. Mgnt. Biol. Invas. 6: 215-225.

Afzal, M.H., Renaudin, V., Lachapelle, G. 2011. Use of earth’s magnetic field for mitigating gyroscope errors regardless of magnetic perturbation. Sensors 11: 11390-11414.

ANSI. 1983. S1.4-1983 (r2006/ansi s1.4a–1985 (r2006). American National Standard Specification for Sound Level Meters. American National Standards Institute. New York.

Andrachuk, M., Marschke, M., Hings, C. & Armitage, D. 2019. Smartphone technologies supporting community-based environmental monitoring and implementation: a systematic scoping review. Biol. Cons. 237: 430-442.

Aranki, D., Kurillo, G., Yan, P.S., Liebovitz, D.M. & Bajcsy, R. 2016. Real-time monitoring of patients with chronic heart-failure using a smartphone: Lessons learned. IEEE Trans. Affect. Comput. 7: 206-219.

Bauer, C. 2013. On the (in-) accuracy of GPS measures of smartphones: a study of running tracking applications. Proc. Int. Conf. Adv. Mobile Comp. Multimedia. Diciembre 2013, Vienna, Austria. Pp: 335-341.

Baumbach, D.S., Anger, E.C., Collado, N.A. & Dunbar, S.G. 2019. Identifying Sea Turtle Home Ranges Utilizing Citizen-Science Data from Novel Web-Based and Smartphone GIS Applications. Chelonian Cons. Biol. 18(2): 133-144.

Bitsch, J., Smith, P., Viol, N. & Wehrle, K. 2011. FootPath: Accurate Map-based Indoor Navigation Using Smartphones. IEEE 978-1-4577-1804-5/11.

Bolger, D.T., Morrison, T.A., Vance, B., Lee, D. & Farid, H. 2012. A computer-assisted system for photographic mark– recapture analysis. Methods Ecol. Evol. 3: 813-822.

Bonney, R., Cooper, C.B. & Dickinson, J. 2009. Citizen science: a developing tool for expanding science knowledge and scientific literacy. BioScience 59: 977-84.

Boudell, J. A., & Middleton, B. A. 2019. Plot Locator: An app for locating plots in the field. Applications in plant sciences. 7(12): e11311.

Braz-Sousa, L., Fricker, S.R., Doherty, S.S., Webb, C.E., Baldock, K.L. & Williams, C.R. 2019. Citizen science and smartphone e-entomology enables low-cost upscaling of mosquito surveillance. Sci. Total Env. 704: 135349. https://doi.org/10.1016/j.scitotenv.2019.135349

Chesmore, D. 2004. Automated bioacoustic identification of species. An. Acad. Brasil. Ciên. 76(2): 436-440.

Chesmore, D. 2007. The Automated Identification of Taxa: Concepts and Applications. Cap. 6, pp: 83-100. En: MacLeod, N. (Ed.) Automated Taxon Identification in Systematics: Theory, Approaches and Applications, CRC Press. New York.

Connors, J.P., Lei, S. & Kelly, M. 2012. Citizen science in the age of neogeography: utilizing volunteered geographic information for environmental monitoring. Ann. Assoc. Am. Geogr. 102 (6): 1267-1289.

Conrad, C.C., & Hilchey, K.G. 2011. A review of citizen science and community-based environmental monitoring: issues and opportunities. Environ. Monit. Assess. 176: 273-291.

D’Hondt, E., Stevens, M. & Jacobs, A. 2013. Participatory noise mapping works! An evaluation of participatory sensing as an alternative to standard techniques for environmental monitoring. Perv. Mobile Comp. 9: 681-694.

Dabove, P., Ghinamo, G. & Lingua, A. M. 2015. Inertial sensors for smartphones navigation. SpringerPlus 4: 834. https://doi.org/10.1186/s40064-015-1572-8

Damani, H., Mehta, R. & Katre, N. 2018. Convergence of Internet of things, Cloud Computing, Big Data and Security. Int. J. Comp. Appl. 181(4): 43-47.

Das, R.D. & Winter, S. 2018. A fuzzy logic based transport mode detection framework in urban environment. J. Intelligent Trans. Syst. 22: 478-489.

Denis, D. & Cruz-Flores, D. 2020. ¿Podemos confiar en el GPS de los celulares para estudios de campo? Preprint. https://doi.org/10.13140/rg.2.2.33389.4147

Dewan, S., & Riggins, F.J. 2005. The digital divide: Current and future research directions. Journal of the Association for information systems. 6(12): 298-337.

Dey, S., Sahoo, S., Agrawal, H., Mondal, A., Bhowmik, T. & Tiwari, V. 2017. Personalized Cumulative UV Tracking on Mobiles & Wearables. En: Proceedings of the 39th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBC). IEEE Xplore, Seogwipo, South Korea.

Disbury, M., Cane, R.P. & Russell, R.C. 2008. Remote identification of exotic mosquito specimens using digital photography. Austr. J. Entom. 47(2): 128-130.

Ericsson. 2013. Ericsson Mobility Report. Disponible en: http://www.eric.com/mobility-report. Ultimo acceso: Marzo, 2020.

Fligor, B. J. 2010. iPhone sound level meter app. Disponible en: http://www.audiologyonline.com/ask-theexperts/iphone-sound-level-meter-apps-150. Último acceso: Julio, 2020.

Galster, J.A. 2013. 15 mobile apps to understand, prevent, measure and manage hearing loss Audiol. Pract. 4: 16–19. Disponible en: http://www.hearing.health.mil/aboutus/pressroom/featured_content/13-01-30/15_Mobile_Apps_to_Understand_Prevent_Measure_and_Manage_Hearing_Loss.aspx. Último acceso: Febrero, 2020.

Garnweidner-Holme, L.M., Borgen, I., Garitano, I., Noll, J. & Lukasse, M. 2015. Designing and developing a mobile smartphone application for women with gestational diabetes mellitus followed-up at diabetes outpatient clinics in Norway. Healthcare 3: 310-323

Garrido, A., Bertolelli, L., Hoefer, A., Yebra, M. & Munasinghe, K. 2019. The FrogPhone: A novel device for real-time frog call monitoring. Methods Ecol Evol. 00: 1-7.

Getzin, S., Wiegand, K. & Scheoning, I. 2012. Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles. Methods Ecol. Evol. 3: 397-404.

Gou, T., Hua, J., Wua, W., Ding, X., Zhoua, S., Fanga, W. & Mu, Y. 2018. Smartphone-based mobile digital PCR device for DNA quantitative analysis with high accuracy. Biosensors and Bioelectronics 120: 144-152.

Graham, M. 2011. Time machines and virtual portals: The spatialities of the digital divide. Progress in development studies. 11(3): 211-227.

Gurgel-Gonçalves, R., Komp, E., Campbell, L.P., Khalighifar, A., Mellenbruch, J., Mendonça, V.J. 2017. Automated identification of insect vectors of Chagas disease in Brazil and Mexico: the virtual vector lab. PeerJ. 5: e3040.

Haklay, M. 2013. Neogeography and the delusion of democratisation. Environment and Planning A. 45(1): 55-69.

Harari, G.M., Lane, N.D., Wang, R., Crosier, B.S., Campbell, A.T. & Gosling, S. D. 2016. Using smartphones to collect behavioral data in psychological science: opportunities, practical considerations and challenges. Perspectives on Psychological Science 11(6): 838-854.

Hellesund, S. 2019. Measuring the speed of sound in air using a smartphone and a cardboard tube. Physics Education 54(3): 035015.

Hiby, L., Paterson, W.D., Redman, P., Watkins, J., Twiss, S.D. & Pomeroy, P. 2013. Analysis of photo-ID data allowing for missed matches and individuals identified from opposite sides. Methods Ecol. Evol. 4: 252-259.

Honicky R., Brewer, E.A., Paulos, E., White, R. 2008. N-Smarts: Networked Suite of Mobile Atmospheric Real-Time Sensors. Proc. 2nd ACM SIGCOMM NSDR, pp.: 25-30. https://doi.org/10.1145/1397705.1397713

Ibekwe T.S., Folorunsho, D.O., Dahilo, E.A., Gbujie, I.O., Nwegbu, M.M. & Nwaorgu, O.G. 2016. Evaluation of mobile smartphones app as a screening tool for environmental noise monitoring. J. Occup. Environ. Hyg. 13(2): D31-D36. https://doi.org/10.1080/15459624.2015.1093134

Igoe, D., Parisi, A.V. & Carter, B. 2013. Characterization of a smartphone camera’s response to ultraviolet A radiation. Photochem. Photobiol. 89(1): 215-218.

Iliffe, M., Mwinami, T. & Harper, D. 2011. Counting flamingos with a mobile phone - connecting all the flamingo lakes? Bull. Flamingo Spec. Group, 18: 38-41.

Jonas-Dwyer, D. & Pospisil, R. 2004. The millennial effect: implications for academic development. pp: 194-206. En: Transforming knowledge into wisdom: holistic approaches to teaching and learning. Proceedings of the 27th HERDSA Annual Conference, Miri, Sarawak.

Kanjo, E. 2010. NoiseSPY: a real-time mobile phone platform for urban noise monitoring and mapping, Mobile Netw. Appl. 15: 562-574.

Kardous, C.A. & Shaw, P. 2014. Evaluation of smartphone sound measurement applications. J. Acoust. Soc. Am. Express Lett. 135: EL186-92.

Phone Sensing Systems: A Survey. IEEE Communications Surveys & Tutorials 15(1): 402-427.

Ken-En, S. 2015. Use of smartphone apps for biomedical research. BioSpectrum. Disponible en: http://www.biospectrumasia.com/print_ article/biospectrum/opinion/2205. Último acceso: Septiembre, 2020.

Kim, J.H., Joo, H.G., Kim, T.H. & Ju, Y.G. 2015. A smartphone-based fluorescence microscope utilizing an external phone camera lens module. BioChip J. 9: 285-292.

Kumar, R., Chou, C.T., Kanhere, S.S., Bulusu, N. & Hu, W. 2010. Ear-phone: an end-to-end participatory urban noise mapping system. pp. 105-116. En: Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks. Abril 12-16, 2010, Stockholm, Sweden. New York, NY, USA.

Kumar, P., Murthy, V., Neela, P.K., Prasad, S. & Keesara, S. 2016. A smartphone app for cephalometric analysis. J. Clinic. Orthod. L(11): 694-699.

Kwok, R. 2009. Personal technology: Phoning in data. Nature 458: 959-961.

Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T. & Campbell, A.T. 2010. A survey of mobile phone sensing. IEEE Comm. Magazine 140-150.

Lien, J., Gillian, N., Karagozler, M.E., Amihood, P., Schwesig, C., Olson, E., Raja, H. & Poupyrev, I. 2016. Soli: Ubiquitous gesture sensing with millimeter wave radar. ACM Transaction on Graphics (TOG) 35(4): 1-19.

Lu, H., Pan, W., Lane, N.D., Chaoudhury, T. & Campbell, A.T. 2009. Sound-Sense: Scalable Sound Sensing for People-Centric Applications on Mobile Phones. Proc. 7th ACM MobiSys, pp.: 165-178.

Lue, G. & Miller, E.J. 2019. Estimating a Toronto pedestrian route choice mode using smartphone GPS data. Travel Behav. Soc. 14: 34-42.

Ma, Z., Qiao, Y., Lee, B. & Fallon, E. 2013. Experimental evaluation of mobile phone sensors. ISSC 2013, LYIT Letterkenny, pp.: 20-21.

Masoud, M., Jaradat, Y., Manasrah, A. & Jannoud, I. 2019. Sensors of smart devices in the internet of everything (ioe) era: big opportunities and massive doubts. Hindawi J. Sens. 2019: 26 p. Article ID 6514520. https://doi.org/10.1155/2019/6514520

Maisonneuve, N, Stevens, M. & Ochab, B. 2010. Participatory noise pollution monitoring using mobile phones. Information Polity 15: 51-71.

Mass, C.F. & Madaus, L.E. 2014. Surface pressure observations from smartphones: A potential revolution for high-resolution wea-ther prediction? Bull. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-13-00188.1.

Mauk, M., Song, J., Bau, H.H., Gross, R., Bushman, F.D., Collman, R.G. & Liu, C. 2017. Miniaturized devices for point of care molecular detection of HIV. Lab Chip 17(3): 382-394.

McKinley, D.C., Miller-Rushing, A.J., Ballard, H.L., Bonney, R., Brown, H., Cook-Patton, S.C., Evans, D.M., French, R.A., Parrish, J., Phillips, T.B., Ryan, S.F., Shanley, L.A., Shirk, J.L., Stepenuck, K.F., Weltzin, J.F., Wiggins, A., Boyle, O.D., Briggs, R.D., Chapin III, S.F., Hewitt, D.A., Preuss, P.W. & Soukup, M.A. 2017. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Conserv. 208: 15-28.

Mendes, J., Pinho, T.M., Neves dos Santos, F., Sousa, J.J., Peres, E., Boaventura-Cunha, J., Cunha, M. & Morais, R. 2020. Smartphone applications targeting precision agriculture practices—a systematic review. Agronomy. 10(6): 855.

Mennill, D.J., Battiston, M., Wilson, D.R., Foote, J.R. & Doucet, S.M. 2012. Field test of an affordable, portable, wireless microphone array for spatial monitoring of animal ecology and behaviour. Methods Ecol. Evol. 3: 704-712.

Monteiro, M. & Martí, A.C. 2020. Using smartphones as hydrophones: two experiments in underwater acoustics. [Physics.ed-ph]. ArXiv: 2002.04382v2

Montgomery, B.L., Shivas, M.A., Hall-Mendelin, S., Edwards, J., Hamilton, N.A., Jansen, C.C., McMahon, J.L., Warrilow, D. & van den Hurk, A.F. 2017. Rapid Surveillance for Vector Presence (RSVP): Development of a novel system for detecting Aedes aegypti and Aedes albopictus. PLoS Neglected Trop. Diseases 11(3), p.e0005505.

Nature America, Inc. 2010. The scientist and the smartphone. Editorial. Nature methods 7(2): 87.

Newman, G., Wiggins, A., Crall, A., Graham, E., Newman, S. & Crowston, K. 2012. The future of citizen science: emerging techno- logies and shifting paradigms. Front. Ecol. Environ. 10(6): 298-304.

Nield, D. 2020. All the Sensors in Your Smartphone, and How They Work. En: https://gizmodo.com/all-the-sensors-in-your-smartphone-and-how-they-work-1797121002. Último acceso: Septiembre, 2020.

Niu, X., Wang, Q., Li, Y., Li, Q. & Liu, J. 2015. Using inertial sensors in smartphones for curriculum experiments of inertial navigation technology. Educ. Sci. 5(1): 26-46.

Nour, A., Hellinga, B, & Casello, J. 2016. Classification of automobile and transit trips from smartphone data: Enhancing accuracy using spatial statistics and GIS. J. Transp. Geogr. 51: 36-44.

Nusser, S.M., Miller, L.L., Clarke, K. & Goodchild, M.F. 2001. Future Views of Field Data Collection in Statistical Surveys. Proc. Digital Gov. Dot Org 2001, National Conference on Digital Government Research, Los Angeles, EU.

Obuchi, S.P., Tsuchiya, S. & Kawai, H. 2018. Test-retest reliability of daily life gait speed as measured by smartphone global positioning systems. Gait Posture 61: 282-286.

Ologe, F.E., Akande, T. y Olajide, T. 2006. Occupational noise exposure and sensorineural hearing loss among workers of a steel rolling mill. Eur. Arch. Otorhinolaryngol. 263(7): 618-621.

ONU. 2009. United Nations Human Settlements Program (UNHabitat): State of the World’s Cities 2008/2009: Harmonious Cities. Nairobi, Kenya: UN-HABITAT.

Overeem, A., Robinson, J.C.R., Leijnse, H., Steeneveld, G.J., Horn, B.K.P. & Uijlenhoet, R. 2013. Crowdsourcing urban air temperatures from smartphone battery temperatures. Geophys. Res. Lett. 40(15): 4081-4085.

Palmer, J.R., Oltra, A., Collantes, F., Delgado, J.A., Lucientes, J., Delacour, S., Bengoa, M., Eritja, R. & Bartumeus, F. 2017. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nature Comm. 8(1): 916.

Palumbo, M.J., Johnson, S.A., Mundim, F.M., Lau, A., Wolf, A.C., Arunachalam, S., Gonzalez, O., Ulrich, J.L., Washuta, A. & Bruna, E.M. 2012. Harnessing smartphones for ecological education, research, and outreach. Bull. Ecol. Soc. Am. Emerging Techn. 93(4): 390-393.

Pennekamp, F. & Schtickzelle, N. 2013. Implementing image analysis in laboratory-based experimental systems for ecology and evolution: a hands-on guide. Methods Ecol. Evol. 4: 483-492.

Piras, M., Dabove, P., Lingua, A.M. & Aicardi, I. 2014. Indoor navigation using smartphone technology: a future challenge or an actual possibility? En: 2014 Plans conference proceedings. Pp: 1343-1352.

Poh, M.Z., Kim, K., Goessling, A.D., Swenson, N.C. & Picard, R.W. 2009. Heartphones: Sensor Earphones and Mobile Application for Non-Obtrusive Health Monitoring. IEEE Int. Symp. Wearable Comp. 2009. pp. 153-154.

Qiu, X., Ge, S., Gao, P., Li, K., Yang, S., Zhang, S., Ye, X., Xia, N. & Qian, S. 2017. A smartphone-based point-of-care diagnosis of H1N1 with microfluidic convection PCR. Microsyst. Technol. 23(7): 2951-2956.

Rather, Z.A., Khuroo, A.A., Dar, A.R. & Dar, T.U.H. 2019. Smartphone-integrated field microscopy (SPFM): a low-cost and portable tool to study live biological specimens in the wild. Plant Biosystems https://doi.org/10.1080/11263504.2019.1686081

Sans-Tresserras, J.A., Gea-Pinal, J., Gimenez, M.H., Esteve, A.R., Solbes, J. & Monsoriu, J.A. 2017. Determining the efficiency of optical sources using a smartphone’s ambient light sensor. Eur. J. Phys. 38(2): 1-9.

Sicard, C., Glen, C., Aubie, B., Wallace, D., Jahanshahi-Anhuhi, S., Pennings, K., Daigger, G. T., Pelton, R., Brennan, J. D. & Felipe, C. D. M. 2015. Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Res. 70: 360-369.

Smith, A.W. 1988. The World Health and Prevention of Deafness and Hearing Impairment. Noise Health. 1: 6-12.

Snaddon, J., Petrokofsky, G., Jepson, P. & Willis, K. J. 2013. Biodiversity technologies: tools as change agents. Biol. Lett. 9: 20121029.

Sriyanti, I., Aliyana, P., Marlina, L. & Jauhari, J. 2020. Light intensity analysis using smartphone’s light sensor. En: Young Scholar Symposium on Science Education and Environment 2019. IOP Journal of Physics: Conf. Series 1467: 012056. https://doi.org/10.1088/1742-6596/1467/1/012056

Statista, 2020. www.statista.com. Último acceso: Agosto, 2020.

Stowell, D. & Plumbley, M. D. 2014. Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning. PeerJ 2: e488.

Sui, D., Goodchild, M., & Elwood, S. 2013. Volunteered geographic information, the exaflood, and the growing digital divide. En: Crowdsourcing geographic knowledge. pp. 1-12. Springer, Dordrecht.

Tarter, K.D., Levy, C.E., Yaglom, H.D., Adams, L.E., Plante, L., Casal, M.G., Gouge, D.H., Rathman, R., Stokka, D., Weiss, J. & Venkat, H. 2019. Using citizen science to enhance surveillance of Aedes aegypti in Arizona, 2015–17. J. Am. Mosquito Control Ass. 35(1): 11-18.

Teacher, A.G.F., Griffiths, D.J., Hodgson, D.J. & Inger, R. 2013. Smartphones in ecology and evolution: a guide for the app-rehensive. Ecol. Evol. 3(16): 5268-5278.

Thiagarajan, A., Rabindranath, L., LaCurts, K., Madden, S., Balakrishnan, H., Toledo, S. & Eriksson, J. 2009. VTrack: accurate, energy-aware traffic delay estimation using mobile phones. Proc. 7th ACM SenSys, Berkeley, CA, Nov. 2009. Pp: 85-98.

Turner, J., Igoe, D., Parisi, A.V., McGonigle, A.J., Amar, A. & Wainwright, L. 2019. A review on the ability of smartphones to detect ultraviolet (UV) radiation and their potential to be used in UV research and for public education purposes. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135873

Walther, D. & Kampen, H. 2017. The citizen science project ‘Mueckenatlas’ helps monitor the distribution and spread of invasive mosquito species in Germany. J. Med. Entomol. 54(6): 1790-1794.

Wang, L.-J., Chang, Y.-C., Ge, X., Osmanson, A.T., Du, D., Lin, Y. & Lei, L. 2016. Smartphone optisensing platform using a DVD grating to detect neurotoxins. ACS Sens. 1: 366-373.

Weiss, J.W., Gulati, G.J., Yates, D.J. & Yates, L.E. 2015. Mobile broadband affordability and the global digital divide, an information ethics perspective. En: 48th Hawaii International Conference on System Sciences, Koloa, Kauai, HI. https://doi.org/10.1109/HICSS.2015.261

Wess, T. 2017. Smartphone citizen science: can a conservation hypothesis be tested using non specialist technology? Herit. Sci. 5: 35. https://doi.org/10.1186/s40494-017-0148-z

Welsh, K. & France, D. 2012. Smartphones and fieldwork. Geography 97: 47-51.

Williams, C.R., Hawthorn-Jackson, D., Orre-Gordon, S. & O’Sullivan, S. 2017. Some cautions in the use of citizen science: a case study of urban insect collection. Trans. Royal Soc. South Australia 141(1): 57-69.

Wong, C., Yi, J. & Ken-En, S. 2016. APD Colony Counter App: using watershed algorithm for improved colony counting. Scientific Phone Apps and Mobile Devices (2019) 5: 5.

Wu, M., Pathak, P.H. & Mohapatra, P. 2015. Monitoring building door events using barometer sensor in smartphones. pp. 319-323. En: UbiComp ‘15, Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan.

Yang, X., Sun, M., Wang, T., Wong, M.W. & Huang, D. 2018. A smartphone based portable analytical system for on-site quantification of hypochlorite and its scavenging capacity of antioxidants. Sens. Actuators. B Chem. 283: 524-531. https://doi.org/10.1016/j.snb.2018.11.131

Yavuz, A. 2015. Measuring the speed of sound in air using smartphone applications. Physics Education 50(3): 281.

Ye, H., Gu, T., Tao, X. & Lu, J. 2016. Scalable floor localization using barometer on smartphone. Wirel. Commun. Mob. Comput. 16(16): 2571. https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcm.2706

Zhou, X. & Li, D. 2018. Quantifying multi-dimensional attributes of human activities at various geographic scales based on smartphone tracking. Int. J. Health. Geogr. 17: 11. https://doi.org/10.1186/s12942-018-0130-3 PMID: 29743069.

Zilli, D., Parson, O., Merrett, G.V. & Rogers, A. 2014. A hidden markov model-based acoustic cicada detector for crowdsourced smartphone biodiversity monitoring. J. Artif. Intell. Res. 51: 805-827.


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2021 Dennis Denis, Daryl D. Cruz Flores, Yarelys Ferrer-Sánchez, Fermín L. Felipe Tamé

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.

Para suscribirse a la revista o enviar un manuscrito para publicar utilice las direcciones:

revistajbn@jbn.uh.cu o revistajbn@gmail.com

ISSN 0253-5696 RNPS 0060 (IMPRESA)

ISSN 2410-5546 RNPS 2372 (DIGITAL)