Nickel hyperaccumulation “in vitro” by Leucocroton havanensis (Euphorbiaceae)

Dubiel Alfonso González, Simona Matrella


Leucocroton havanensis, a perennial shrub endemic to ultramafic (serpentine) soils of “Lomas de Galindo” and “La Coca” in western Cuba, is a known nickel hyperaccumulator. The present work examined different treatments for the disinfection and germination of seeds from L. havanensis, examining nickel hyperaccumulation under “in vitro” culture conditions. The following seed disinfection treatments were assayed: NaClO (1% and 2%) for 5, 10 and 15 minutes, and HgCl2 (0.01% and 0.05%) for 3, 5 and 10 minutes, combined with 1% Tween-20 in all cases. MS basal medium was used for germination, employing the dimethylglyoxime method for qualitative nickel determinations and Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) to quantify Ni levels. Treatment with 0.05% HgCl2 – 1% Tween-20 for 10 minutes was shown to be optimal, producing germination rates of 98.5%. Under “in vitro” culture conditions, L. havanensis absorbed nickel from the culture medium, accumulating it to levels of 5000.03 mg·g-1 in all organs of the plant. The “in vitro” culture system described here for L. havanensis can be used as a model system to study the molecular mechanisms of nickel hyperaccumulation in the genus Leucocroton.

Recibido: 14 de enero 2013.

Aceptado: 15 de marzo 2013

Palabras clave

Leucocroton havanensis; Ni hyperaccumulation, “in vitro” culture

Estadísticas de Vistas/View Statistics: Resumen - 251 ; PDF - 170

Texto completo:



Banuelos, G. S. 2006. Phyto-products may be essential for sustainability and implementation of phytoremediation. Environmental Pollution. 144:19–23.

Berazaín, R., de la Fuente, V., Rufo, L., Rodríguez, N., Amils, R., DíezGarretas, B., Sánchez-Mata, D. & Asensi, A. 2007. Nickel localization

in tissues of different hyperaccumulator species of Euphorbiaceae from ultramafic areas of Cuba. Plant Soil. 293:99–106.

Bhatia, P., Bhatia, N. P. & Ashwath, N. 2002. “In vitro” propagation of Stackhousia tryonii Bailey (Stackhousiaceae): a rare and serpentineendemic species of central Queensland, Australia. Biodivers. & Conservation 11: 1469–1477.

Bhatia, N. P., Nkang, A. E., Walsh, K. B., Baker, A. J. M., Ashwath, N. & Midmore, D. J. 2005. Successful Seed Germination of the Nickel Hyperaccumulator Stackhousia tryonii. Ann. Bot. (Oxford) 96: 159–163.

Bidwell, S.D., Pederick, J.W., Sommer-Knudsen, J. & Woodrow, I.E. 2001. Micropropagation of the nickel hyperaccumulator, Hybanthus floribundus (Family Violaceae). Pl. Cell Tissue Organ Cult. 67: 89-92.

Borhidi, A. 1988. El efecto ecológico de la roca serpentina sobre la flora y la vegetación de Cuba. Acta Bot. Hung. 34 (1-2): 123-174.

Brooks, R. R. 1998. Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International. Wallingford. Oxon. 380 pp.

Brooks, R. R., Lee, J., Reeves, R. D. & Jaffré, T. 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration 7: 49-57.

Chaney, R. L., Angle, J. S., McIntosh, M. S., Reeves, R.D., Li, Y.M., Brewer, E. P., Chen, K. Y., Roseberg, R. J., Perner, H., Synkowski, E. C., Broadhurst, C. L., Wang, S. & Baker, A. J. M. 2005. Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z. Naturforsch. 60C:190–198.

Che, P., Gingerich, D. J., Lall, S. & Howell, S.H. 2002. Global and hormone induced gene expression changes during shoot development in Arabidopsis. Plant Cell. 14: 2771–2785.

Che, P., Lall, S., Nettleton, D. & Howell, S.H. 2006. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Pl. Physiol. 141: 620–637.

Cobbett, C. S. 2000. Phytochelatins and their role in heavy metal detoxification. Pl. Physiol. . 123:825-823.

Daquinta, M. R., Ramos, L., Capota, I, Lezcano, Y, Trino, D & Escalona, M. 2003. Manejo biotecnológico de especies forestales y bambués en Cuba. Propagación “in vitro” de especies forestales y bambués. Canadá. Revista del Congreso Mundial de Forestales :112-118.

De Souza, M. P., Huang, C. P., Chee, N. &Terry, N. 1999. Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta. 209: 259–263.

García, A., Álvarez, M., Guadalupe, J., Rodríguez, de la O J.L. & Corona, A.A. 2008. Germinación “in vitro” de semillas de Nolina parviflora. Redalyd (Red de Revistas Científicas de América Latina, el Caribe, España y Portugal). 10 (2): 27-33.

Jestrow, B., Jiménez Rodríguez, F. & Francisco-Ortega, J. 2010. Generic delimitation in the Antillean (Adelieae) (Euphorbiaceae) with description of the Hispaniolan endemic genus Garciadelia. Taxon 59 (6): 1801–1814.

Lasat, M. M. 2002. Phytoextraction of toxic metals: A review of biological mechanisms. J. Environm. Qual. 31:109–120.

McGrath, S. P., Zhao, F.J. & Lombi, E. 2002. Phytoremediation of metals, metalloids, and radionuclides. Advanced Agronomy 75:1–56.

Minguzzi, C. &Vergnano, O. 1948. Il contenuto di nichel nelle ceneri di Alyssum bertolonii Desv. Atti Soc. Tosc. Sci. Nat. Pisa Mem. Memorie Serie A 55: 49-77.

Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bioassays with tissue culture. Physiol. Pl. 15:473-497.

Ramírez-Villalobos, M., Urdaneta, A. & León, S. 2002. Establecimieno “in vitro” de explantes adultos del guanábano (Annona muricata L.) tratados con hipoclorito de sodio. Revista de la Facultad de Agronomía. 19:48-55.

Rawser, W.E. 1999. Structure and function of metal chelators produced by plants: the case of organic acid, amino acid, phytin and metallothioneins. Cell Biochemistry and Biophysics. 31:19-48.

Reeves, R.D. 1992. The hyperaccumulation of nickel by serpentine plants. In: Baker A.J.M., Proctor J., Reeves R.D. eds. The vegetation of ultramafic (serpentine) soils. Andover. UK: Intercept Ltd. 253-277.

Reeves, R.D., Baker, A.J.M., Borhidi, A. & Berazaín, R. 1996. Nickel accumulating plants from the ancient serpentine soils of Cuba. New Phytol. 133: 217-224.

Reeves, R.D., Baker, A.J.M., Borhidi, A. & Berazaín, R. 1999. Nickel hyperaccumulation in the serpentine flora of Cuba. Ann. Bot. 83: 29–38.

Robinson, B.H., Brooks, R.R. & Clothier, B.E. 1999. Soil amendments affecting nickel and cobalt uptake by Berkheya coddii: potential use for phytomining and phytoremediation. Ann. Bot. 84: 689–694.

Steinmacher, D.A., Krohn, N.G., Dantas, A.C. M., Stefenon, V.M., Clement, C.R. & Guerra, M.P. 2007. Somatic Embryogenesis in Peach Palm Using the Thin Cell Layer Technique: Induction, Morphohistological Aspects and AFLP Analysis of Somaclonal Variation. Ann. Bot. 100: 699–709.

Su, Y. H., Zhao, X. Y., Liu, Y. B., Zhang, C. L., O’Neil, S. D. & Zhang, X.S. 2009. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. The Plant Journal. 59: 448–460.

Vinterhalter, B. & Vinterhalter, D. 2005. Nickel hyperaccumulation in shoot cultures of Alyssum markgrafii. Biol. Pl. 49 (1): 121-124.

Whiting, S. N., de Souza, M. P. & Terry, 2001. N. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environm. Sci. Technol. 35, 3144–3150.

Yucesan, B., Turker, A. U. & Gurel, E. 2007. TDZ-induced high frequency plant regeneration through multiple shoot formation in witloof chicory (Cichorium intybus L.). Pl. Cell Tissue Organ Cult. 91: 243–250.

Enlaces refback

  • No hay ningún enlace refback.

Copyright (c) 2014 Dubiel Alfonso González, Simona Matrella

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.

Para suscribirse a la revista o enviar un manuscrito para publicar utilice las direcciones: o

ISSN 0253-5696 RNPS 0060 (IMPRESA)

ISSN 2410-5546 RNPS 2372 (DIGITAL)